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 Preface 

 

This book is written for mechanical, electrical, aeronautical, marine, civil, chemical and 

all other deterministically educated engineers who are daily creating airplanes, cars, 

ships, trains and all other machines. However, this book is not written to tell them how to 

deal with their functionality performance but to give them the fundamentals of the 

mathematical knowledge required dealing with their functionability1 performance. In 

simplest terms, at the design stages of any machine the functionality performance, like 

speed, acceleration, stopping distance, reaction time, take off power and similar have to 

be predicted, but at the same time answers to the following questions have to be 

provided:   

 

Will a given machine be functionable until a given instant of time? 

Will a given machine be functionable at a given instant of time? 

Will a given machine state be tested by a given instant of time? 

Will functionability resources be provided by a given instant of time? 

Will a given machine stay functionable during a stated period of time? 

Will a given machine be functionable at a given instant of time? 

 

Although these questions are related to very different properties of a machine, for which 

different types of engineers are responsible, they all have answers of the common nature, 

which is;  

 

“Yes, with a probability of x.” or “No, with a probability of y” 

 

However, answers of this type cause huge and fundamental difficulties, among 

mechanical, electrical, aeronautical, civil and other types of engineers, in understanding 

and predicting the numerical values of x and y.  The reason for that is the fact that all 

types of engineering are based n scientific disciplines in which relationships are governed 

                                                           
1 Functionability, n, ability to function, introduced by Dr Knezevic in the book “Reliability, Maintainability 
and Supportability – a probabilistic approach, McGraw Hill, London, 1993. [1] 
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by rules and laws of a deterministic nature. Consequently, the measures that describe 

quantitatively describe the functionality performance of machines have well understood 

and uniquely defined values. For example, speed, acceleration, weight, volume, capacity, 

voltage, length, width, shape, road clearance, size of memory, centre of gravity, 

conductivity and many others are single-value numbers for a machine under 

consideration. Thus, classical engineers are people whose minds are orientated towards a 

deterministic way of thinking. However, when it is necessary to provide the probabilistic 

answers, as it is the case with questions raised above, it becomes clear that the 

deterministic approach does not work.  Consequently, the concept of probability has to be 

embraced into engineering vocabulary, before it enters into engineering methods and 

practices. 

 

Probability is an abstract entity that obtains a physical meaning only when behaviour of a 

large sample of a given machine is considered. Hence, understanding and predicting the 

numerical values of “x” is reduced to the physical observations and analysis of the 

functionability performance of a large sample of a given machine, resulting from the 

occurrences of physically observable and measurable functionability events.   

 

Consequently, to use the concept of probability in the dealings with the functionability 

properties of machines, it is necessary to learn the terminology, definitions and rules of 

probability theory, in the manner understandable to, deterministically educated and 

trained engineers.  

 

However, it is important to stress that this book is not intended to be a rigorous treatment 

of all relevant theorems and proofs. The intention is to provide an understanding of the 

main concepts behind probability theory and to show practical applications of the existing 

theorems and rules on the observable functionability measures of a machine in-service 

life.  At the same time, this is not a book that explains how to generate probability 

functions but how to use it once they are known.  
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As a mechanical engineer who has spent over thirty years trying to mathematically and 

scientifically understand and apply the concept of probability to the concept of 

functionability, which is the foundation of Mirce Mechanics, I would be extremely happy 

if my experience, as summarised in this book, can be of some value to all existing 

durability, reliability, maintainability, supportability and similar type of engineers and 

managers and students alike who have chosen to become a part of this exciting and 

challenging profession. 

 

 

Dr J. Knezevic 

Woodbury Park 

26th March 2013 

 

 

P.S. I wish to emphasise that whatever is covered by this book is mathematically and 

scientifically correct but there is much more that has not been addressed. However, all 

that is not covered could not be understood without understanding material presented in 

this book. 
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1. Introduction 
 

“We do not know how to predict what would happen in any given circumstances, and we 

believe now that it is impossible, that the only thing that can be predicted is the 

probability of different events.”                         R. Feynman 

 

According to Einstein “Everything that the human race has done and thought is 

concerned with the satisfaction of felt needs”. During the history of the human 

civilisation an endless number of machines have been created to satisfy endless human 

needs. Hence, humans have created ships, airplanes, tractors, computers, cars, radars, and 

other machines. The designed-in capability of any machine to satisfy felt needs by 

delivering the required function, with a physically measurable performance like speed, 

acceleration, power, fuel consumption, breaking distance and many others, is known as 

functionality. The functionality performance of any machine results from well known and 

understood physical processes, all of which are accurately predictable by the laws of 

science. The essential features of these laws are determinism, reversibility and 

independence of time, location and human impacts.  

 

However, to deliver inherent functionality machines live their lives in a natural 

environment governed by human decisions and action. Thus, a life of machines is 

continuously shaped by very rich interactions that generate physically observable 

phenomena like failures, accidents, services, inspections, repairs, modification, 

replacements, cannibalisation, demands for spare parts, necessary training, transportation 

delays, storage damage, and so forth. These phenomena determine the characteristic of a 

machine known as functionability2, which is measured through reliability, punctuality, 

availability and similar characteristics. The functionability of machine is an emerging 

property of rich interactions between internal components of machines and the interaction 

of a machine with the natural world and human actions. The essential features of these 

interactions are indeterminism, irreversibility and dependence of time, space and human 
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impacts, and as such they are not predictable by the laws of science used for the 

predictions of their functionality. 

 

Consequently, to scientifically understand the mechanics that generate functionability 

events in time that shape the functionability performance of a machine I established the 

MIRCE Akademy at Woodbury Park, in 1999. Our staff, students, fellows and members 

study mechanisms that generate emerging functionability events, in scale from 10-10 to 

1010 metre, through the life of machines like aircraft, racing cars, ships, trains and similar 

to understand their complexity and dynamics. Our research established that: 

 

1. Each Machine has unique functionability pattern in respect to events and their timing 

2. There is a functional and spatial interdependence between the parts of a machine. 

3. Natural and human environment shape emerging functionability events 

 

Having taken onboard the above observed facts; I have created a mathematical scheme 

for the prediction of the motion of the functionability events through the life of a given 

machine. This has given birth to Mirce Mechanics, whose axioms, mathematical 

formulas, rules and computational methods enable predictions of a functionability 

performance to be made with a probabilistic regularity.  

 

Consequently, the satisfaction of human needs through time depends on combined effects 

of functionality and functionability performance of machines. Thus, deterministically 

educated engineers are needed for creating functionality performance and 

probabilistically educated engineers are needed for the creation of functionability 

performance and their interactions will determine the reliability, cost and effectiveness of 

the satisfaction of human needs. 

 

Mechanical, electrical, civil, aerospace, marine, manufacturing and other types of 

engineers are very familiar with the above statements, apart from the expression 

                                                                                                                                                                             
22  Functionability is emerging characteristic of a machine life that defines the ability to function through 
time. in Knezevic, J., Reliability, Maintainability and Supportability – A probabilistic Approach, Text and 
Software package, pp. 291, McGraw Hill, London 1993. ISBN 0-07-707691-5 
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“probabilistic regularity”. That is concept that does not exist in their vocabularies. Daily 

used laws and formulas developed by the great scientist like Newton, Maxwell, Faraday, 

Hook, La place, Hamilton, Bernoulli and many others are related to deterministic 

regularity, which is one where all initial parameters and conditions are defined the future 

always deliver precisely predicted results. However, in Mirce Mechanics the future 

always delivers different results, which cannot be predicted precisely.  

 

Consequently, the concept of probability has to be embraced. It is an abstract entity that 

obtains a physical meaning only when behaviour of a large sample of a given machine is 

considered. Hence, understanding the answers to the questions raised, is reduced to the 

physical observations and analysis of the trajectories of the motion of a large number of 

given machines through functionability states, resulting from the occurrences of 

physically observable and measurable functionability events.   

 

Consequently, to use the concept of probability in the dealings with the functionability 

properties of machines, it is necessary to learn the terminology, definitions and rules of 

probability theory, in the manner understandable to, deterministically educated and 

trained engineers and managers.  

 

1.1 The Nature of Probability Theory 

 

Probability theory is a mathematical discipline with aims similar to those, for example, of 

geometry or analytical mechanics. In each field the following three aspects of the theory 

must be distinguished 

 

• The formal logical content 

• The intuitive background 

• The applications.  

 

The character of probability theory cannot be understood and appreciated without 

considering all three aspects in their dependencies.  
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1.1.1 Formal Logical Content 

 

Mathematics is a human creation that is axiomatically concerned with relations among 

undefined things.  For example, geometry does not even try to discuss what a point or a 

line “really are.” They remain undefined entities, as the axioms of geometry defy the 

relations among them. For example the first axiom states that two points determine a line.  

Thus, axioms are the rules, and there is nothing magical about them. Hence, in 

mathematics any statement is true if and only if it is a logical outcome of the basic 

axioms. Different forms of geometry are based on different sets of axioms, and the 

logical structure of non-Euclidean geometries is independent of their relation to reality.  

Situation is the same in physics where physicists study the motion of bodies under laws 

of attraction different from Newton’s, and such studies are meaningful even if Newton’s 

law of attraction is accepted as true in nature. 

 

1.1.2 Intuitive Background 

 

The axioms of geometry and of mechanics have an intuitive background. In fact, 

geometrical intuition is so strong that it is prone to run ahead of logical reasoning. The 

extent to which logic, intuition, and physical experience are interdependent is a problem 

beyond the scope of this book.  However, what is certain is the fact that intuition can be 

trained and developed. All of us were novices in mathematics and as such we progress 

cautiously and relied on individual rules, whereas at later stages, due to experience 

accumulated, some people developed a natural feeling for concepts such as four-

dimensional space. 

 

Even the collective intuition of mankind appears to progress. Newton’s notions of a field 

of force and of action at a distance and Maxwell’s concept of electromagnetic waves 

were at first decried as “unthinkable” and “contrary to intuition.”  However, today’s 

technology manifested through radio, phone, computer, microwave oven and similar 

machines have popularised these notions to such an extent that they formed a part of the 

ordinary vocabulary. Similarly, the modern student has no appreciation of the modes of 
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thinking, the prejudices, and other difficulties against which the theory of probability had 

to struggle when it was new.  

 

Nowadays newspapers report on samples of public opinion and the magic of statistics 

embraces all phases of life to the extent that every day we get the statistics of the chances 

of rain during each day. Thus everyone has acquired a feeling for the meaning of 

statements such as “the chances of rain are 40 %.” Vague as it is, this intuition serves as 

background and guide for the first step. It will be developed as the theory progresses and 

acquaintance is made with more sophisticated applications. 

 

1.1.3 Applications 

 

The concepts of geometry and mechanics are in practice identified with certain physical 

objects, but the process is so flexible and variable that no general rules can be given. The 

notion of a rigid body is fundamental and useful, even though no physical object is rigid. 

Whether a given body can be treated as if it were rigid depends on the circumstances and 

the desired degree of approximation. A rubber is certainly not rigid, but in discussing the 

motion of automobiles on ice textbooks usually treats the rubber tyres as rigid bodies. 

Depending on the purpose of the theory, the atomic structure of matter is usually 

disregarded and it is typically treated as a single mass point. 

 

In applications, the abstract mathematical models serve as tolls to mechanical, electrical, 

aeronautical and other types of engineers. In some cases different models can be used to 

describe the same empirical situation. The manner in which mathematical theories are 

applied does not depend on preconceived ideas; it is a purposeful technique depending 

on, and changing with, experience. A philosophical analysis of such techniques is a 

legitimate study, but it is not within the realm of mathematics, physics, or statistics. The 

philosophy of the foundations of probability must be divorced from mathematics and 

statistics, exactly as the discussion of our intuitive space concept is now divorced from 

the mathematical concept of geometry. 
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1.2 The Statistical Probability 

 

It is a historical fact that probability theory was originally developed to address games of 

chance. However, by now it is clear that intuitive probability is insufficient for scientific 

purposes. The observable, or “natural,” probability distribution seemed perfectly clear to 

everyone and has been accepted without hesitation by physicists. 

 

 The modern mathematical theory of probability is limited to one particular aspect of 

“chance” that that might be called physical or statistical probability. Generally speaking, 

this concept may be characterised as a concept of probabilities that does not refer to 

judgements but to possible outcomes of a conceptual experiment. Thus, from the outset 

the existence of the possible outcomes of an experiment (known as the sample space) and 

the probabilities associated with them. This is analogous to the procedure in mechanics 

where fictitious models involving two, three, or seventeen mass points are introduced, but 

all of them are deprived from individual properties. Similarly, in analysing the statistical 

experiment, probability theory is concerned with the accidental circumstances of an 

actual experiment. Hence, the object of study is sequences (or arrangements) of possible 

outcomes. There is no place in our system for speculations concerning the probability that 

the sun will rise tomorrow.  

 

The astronomer speaks of measuring the temperature at the centre of the sun or of travel 

to Sirius. These operations seem impossible, and yet it is not senseless to contemplate 

them. By the same token, it is unnecessary to worry whether or not a mentally conceived 

experiment can be performed; as it is perfectly possible to analyse abstract models. In the 

back of our minds we keep an intuitive interpretation of probability, which gains 

operational meaning in certain applications. We imagine the experiment performed a 

great many times. An event with probability 0.6 should be expected, in the long run, to 

occur sixty times out of a hundred. This description is deliberately vague but supplies a 

picturesque intuitive background sufficient for the more elementary applications. As the 

theory proceeds and grows more elaborate the operational meaning and the intuitive 

picture will become more concrete. 
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Probabilities, in Mirce Mechanics, play the same role as masses in classical mechanics. 

The motion of the planetary system can be discussed without knowledge of the individual 

masses and without contemplating methods for their actual measurements. Even models 

for non-existent planetary systems may be the subjects of a beneficial and challenging 

study. Similarly, practical and useful probability models may refer to non-observable 

worlds. Probability theory would be effective and useful even if not a single numerical 

value were accessible. [2] 
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 2. Experiments 
 

The word experiment is used to describe any process that can be repeated under given 

conditions in order to obtain some measurement. For example in chemistry laboratory it 

is possible to determine that the boiling point of water is 100o C. Given that the 

experimental conditions remain the same, each result will be always obtained. 

 

However, there are experiments in which the results vary in spite of all efforts to keep the 

experimental condition the same. For example, the duration of a pit stop of a formula one 

car clearly demonstrate the point made. The same car, driven by the same driver, coming 

to the stop at the same place, where the same mechanics, using the same tools, perform 

the same task, wheels replacement, always take a different amount of time. 

 

2.1 Experiments and Events 

 

An experiment is a well-defined act or process that leads to a single well-defined 

outcome. 

 

This definition is generally accepted terminology in probability theory, to represent any 

process, trial, action or activity related to a real life situation. Thus, every experiment 

must: be capable of being described, so that the observer knows when it occurs. Hence 

each experiment has one and only one outcome, so that the set of all possible outcomes 

can be specified. 

 

 

 

 

 

 

Figure 2.1 Graphical Representation of an Experiment and its Outcomes. 

 

Experiment 
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Generally speaking experiments can be divided into following two categories: 

 

• Deterministic Experiments, where the same result is obtained each time the same 

experiment is repeated. 

• Statistical Experiments, where different results are obtained each time the same 

experiment is repeated. 

………………………………………………………………………… 

 

3. THE CONCEPT OF THE PROBABILITY SYSTEM 
 

“Who start in certainty end in doubt” 
 
The physical manifestations of the Probability theory could be seen in everyday life 
situations where the outcome of a repeated process, experiment, test, or trial is a priority 
unknown and a prediction has to be made. 
 
To use the concept of probability in everyday scientific and engineering practices it is 
necessary to learn the terminology, definitions and rules of probability theory. It is 
important to understand that this monograph is not intended to a rigorous treatment of all 
relevant theorems and proofs. The intention is to provide an understanding of the main 
concepts behind probability theory and to show practical applications of the existing 
theorems, rules and definitions in the scientific and engineering applications.   
 
 
3.1 The Probability Function 
 
The theory of probability is developed from axioms in the same way as algebra and 
geometry. In practice this means that its elements have been defined together with several 
axioms that govern their relations. All other rules and relations are derived from them. 
The full derivation of elementary rules and axioms can be found in Kolmogorov3. 
 
In cases where the outcome of an experiment is uncertain, it is necessary to assign some 
measure that will indicate the chances of occurrence of a particular event. Such a measure 
of events is called the probability of the event and symbolized by P(.), and for event A, is 
P(A). The function which associates each event A in the sample space S, with the 
probability measure P(A), is called the probability function3 - the probability of that 
event. A graphical representation of the probability function is given in Figure 3.1. 
 
 
 
 
                                                           
3 Function is a relation where each member of the domain is paired with only one member of the range. 
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Figure 3.1 Graphical Representation of Probability Function 
 
Formally, the probability function is defined as: …………………………………….. 
 
 
 
4.  The Concept of the Random Variable 
 

A function that assigns a number (usually a real number) to each sample point in the 

sample space S is a random variable4. 

 

Outcomes of experiments may be expressed in numerical and non-numerical terms. In 

order to compare and analyse them it is much more convenient to deal with numerical 

terms. So, from the point of view of practicality, it is necessary to assign a numerical 

value to each possible elementary event in a sample space S. Even if the elementary 

events themselves are already expressed in terms of numbers, it is possible to reassign a 

single number to each elementary event.  Thus, each elementary event in S can be 

associated with one, and only one, real number. The function that achieves this is known 

as the random variable. 

 

Suppose that the symbol X is used to stand for any particular number assigned to any 

given elementary event. Thus, X is a variable since there will be some set of elementary 

                                                           
4 The variable is only a placeholder, which can always be replaced by any particular element from a set of 
possibilities, which means that wherever they appear in mathematical expressions they can be replaced by 
one element from some specified set. 

    S 
a

b k

c

0               0.5               1 

Probability Function 
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events assigned to this value.  In other words, a random variable is a real-valued function 

defined in a sample space. Usually it is denoted with capital letters, such as X, Y and Z, 

whereas small letters, such as x, y, z, a, b, c, and so on, are used to denote particular 

values of random variables, see Figure 4.1. 

 

 

 

 

 

 

 

 
 

Figure 4.1 Graphical Representation of Random Variable 

 

If X is a random variable and r is a fixed real number, it is possible to define the event A 

to be the subset of S consisting of all sample points 'a' to which the random variable X 

assigns the number r, ( : ( ) )A a X a r= = . On the other hand, the event A has a 

probability ( )p P A= . The symbol p can be interpreted, generally, as the probability that 

the random variable X takes on the value r, ( )p P X r= = . Thus, the symbol 

( )P X r= represents the probability function of a random variable. 

 

Therefore, by means of the random variable it is possible to assign probabilities to real 

numbers, although the original probabilities were only defined for events of the set S, as 

shown in Figure 4.2. ………………………………………………………….. 

 

5. The Concept of the Probability Distribution of Random Variables 
 

Taking into account the concept of the probability distribution, and the concept of the 

random variable, given in chapters 3 and 4 respectively, it could be said that the 

    S 
a 

b
c

d

-∞                                      0                                   -∞ 

Random Variable 
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probability distribution of the random variable is a set of pairs,{ }, ( ), 1,i ir P X r i n= =  as 

shown in Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

S A B C     ……………………………… 

X x1 x2 x3      

P p1 p2 p3      

Probability Distribution of a Random Variable 

 

Figure 5.1 Probability Distribution of a Random Variable  

 

The easiest way to present this set is to make a list of all its members.  If the number of 

possible values is small, it is easy to specify a probability distribution.  On the other hand, 

if there are a large number of possible values, a listing may become very difficult.  In the 

extreme case, where an infinite number of possible values are concerned (for example, all 

real numbers between zero and one), it is clearly impossible to make a listing.  For those 

cases, in mathematics, there are other methods that could be used for specifying a 

probability distribution of a random variable, namely:  ………………………. 

6. Discrete Theoretical Probability Distributions 
 

  S 
A 

B
A

C

-∞                                         0                                  +∞ 0                    0.5                 1 

 

Probability Function Random Variable, X 
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In probability theory, there are several rules that define the functional relationship 

between the possible values of random variable X and their probabilities, P(X).  Rules 

that have been developed by mathematicians will be analysed here. As they are purely 

theoretical, i.e. they do not exist in reality, they are called theoretical probability 

distributions.  Instead of analysing the ways in which these rules have been derived, the 

analysis in this chapter concentrates on their properties. 

 

It is necessary to emphasize that all theoretical distributions represent the family of 

distributions defined by a common rule through unspecified constants known as 

parameters of distribution.  The particular member of the family is defined by fixing 

numerical values for the parameters that define the distribution. The probability 

distributions most frequently used in engineering are examined in the next chapter. 

 

Among the family of theoretical probability distributions that are related to discrete 

random variables, the Binomial distribution and the Poisson distribution are relevant to 

the objectives set by this book. A brief description of each now follows. 

……………………………………………………. 

 

6.1 Bernoulli Trials 

 

The simple probability distribution is one with only two event classes.  For example, a 

car is tested and one of two events, pass or fail, must occur, each with some probability.  

The type of experiment consisting of series of independent trials, each of which can 

eventuate in only one of two outcomes are known as Bernoulli Trials, and the two event 

classes and their associated probabilities a Bernoulli Process.  In general, one of the two 

events is called a “success” and the other a “failure” or “non-success”.  These names 

serve only to tell the events apart, and are not meant to bear any connotation of 

“goodness” of the event.  The symbol p, stands for the probability of a success, q for the 

probability of failure (p + q =1).  If 5 independent trials are made (n = 5), how many 

different sequences of their outcomes could be observed?  
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Applying Rule 1 (Section 2), the answer is, 25 = 32.  However, it is not necessarily true 

that all sequences will be equally probable.  The probability of a given sequences 

depends upon p and q, the probability of the two events.  Fortunately, since trials are 

independent, it is possible to compute the probability of any sequence. 

 

For example, let us find the probability of the particular sequence of events (S, S, F, F, 

S), where S stands for success and F for failure.  The probability of first observing an S is 

p.  If the second observation is independent of the first, then: 

 

Probability of ( , )S S p p p= × = 2
 

 

The probability of an F on the third trial is, so that probability of (S, S) followed by F 

is 2p q . In the same way probability of 2 2( , , , )S S F F p q=  and that of the entire sequence 

is: 2 2 3 2p q p p q= .  The same argument shows that the probability of the sequences (S, F, 

F, F, F) is 4pq , that 5( , , , , )S S S S S p= , of 3 2( , , , , )F S S S F p q= , and so on. 

 

If all possible sequences and their probabilities are written down the following fact 

emerges:  The probability of any given sequences of n independent Bernoulli Trials 

depends only on the number of successes and p.  This is regardless of the order in which 

successes and failure occur in sequence, the probability is:  r n rp q −  whereas the number 

of successes, and n r−  is the number of failures. 

………………………. 

 

6.2 The Binomial Distribution 

 

The theoretical probability distribution, which pairs the number of successes in n trials 

with its probability, is called the binominal distribution. 

This probability distribution is related to experiments, which consist of a series of 

independent trials, each of which can result in only one of two outcomes: success and or 
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failure. These names are used only to tell the events apart. By convention the symbol p 

stands for the probability of a success, q for the probability of failure ( 1)p q+ = . 

 

The number of successes, x in n trials is a discrete random variable which can take on 

only the whole values from 0 through n. The formal rule for the probability mass function 

of the discrete random variable X is: 

 

( , ) ( ) , 0x n xn
f x n P X x p q x n

x
− 

= = = < < 
 

   6.1 

where:    !
!( )!

x n x x n xn np q p q
x x n x

− − 
=  − 

     6.2 

 The binomial distribution expressed in cumulative form, representing the probability 

that X falls at or below a certain value 'a' is defined by the following equation: 

 

0

( ) ( )
a a

i n i
i

i o i

n
P X a P X x p q

i
−

= =

 
≤ = = =  

 
∑ ∑     6.3 

As an illustration of the binomial distribution, the PMF and CDF are shown in Figure 6.1 

with parameters n = 10 and p = 0.3. 

PMF for Binomial Distribution

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10n

p(
X=

x)

 
Figure 6.1 PMF for Binomial Distribution, n = 10, p = 0.3 

 

…………………………………………………………. 
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Example 6.1  

 

Consider a large fleet of cars, where 80 per cent of them have an engine, which can only 

run on leaded petrol, and 20 per cent of them can only use unleaded petrol. What is the 

probability that an engineer checking three cars will find one with an unleaded petrol 

engine? 

 

Solution 6.1 

 

This may be regarded as a Bernoulli process with unleaded being a success and leaded a 

failure, with corresponding probabilities p = 0.20 and q = 0.80. The required probability 

can be determined by making use of Equation (6.1), where n = 3, x =1, thus:  

1 3 13 3 2 1(1) ( 1) (0.20) (0.80) 0.2 0.64 0.38
1 1 (2 1)

F P X −  × ×
= = = = × × =  × × 

 

 

Example 6.2 

 

According to past information the probability of producing a defective component is 

0.05. Maintaining the same production process in the following six trials determine: 

 

(a) The probability of no defectives 

(b) The probability of two defectives 

(c) The mean and the standard deviation of the number of defectives 

 

Solution 6.2: 

 

On the assumption that the probability of occurrence of a defective component remains 

constant from trial to trial, the problem can be viewed as a series of six Bernoulli trials 

and the required answers could be obtained from the binomial distribution with n = 6, p = 

0.05 and q = 0.95. Thus: 
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 (a)        

0 6

0 6

! 6!( 0) 0.05 0.95
!( )! 0!(6 0)!

6 5 4 3 2 1 0.05 0.95 1 1 0.74 0.74
1 (6 5 4 3 2 1)

x n xnP X p q
x n x

−= = = ×
− −

× × × × ×
= × = × × =

× × × × × ×

 

 

       (b)                          2 46!( 2) 0.05 0.95 0.0305
2!(6 2)!

P X = = × =
−

 

 

        (c)   Mean number of defectives ( ) 6 0.05 0.30M X np= = × =   

 

               Standard deviation ( ) 6 0.05 0.95 0.53SD X npq= = × × =   

 

Example 6.3 

 

A product is claimed to be 90 per cent free of defects. What is the expected value and 

standard deviation of the number of defects in a sample of four? 

 

Solution 6.3: 

 

In this example n = 4, p = 0.10 and q = (1 - 0.1) = 0.9, ( ) 4 0.10 0.40E X = × =  and 

SD X( ) . . .= × × =4 010 0 90 0 60  
 

The same results can be achieved in a more tedious way by the direct application of 

Equation (6.4) for E(X) and (6.5) for V(X), as shown in Table 6.1. 

 

Table 6.1 Solutions to Example 6.3 

 

Defects Individual probability E X( )  E X( )2
 

0 0.6561 0.0000 0.0000 

1 0.2916 0.2916 0.2916 
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2 0.0486 0.0972 0.1944 

3 0.0036 0.0108 0.0324 

4 0.0001 0.0004 0.0016 

 1.000 0.4000 0.5200 

 

Therefore, the expected number of defects in the sample of four is E[X] = 0.4 with a 

standard deviation 2( ) 0.52 0.4 0.6SD X = − = .  

 

7. CONTINUOUS THEORETICAL PROBABILITY DISTRIBUTIONS 
 

 

In probability theory, there are several rules, which define the functional relationship 

between the possible values of random variable X and their probability rules, ( )P X . As 

mathematicians on theoretical bases have developed these rules, they are called 

theoretical probability distributions. It means that they do not exist in physical reality, but 

they could be used to represent physical phenomena.  Instead of analysing the ways in 

which these rules have been derived, the analysis in this chapter concentrates on their 

properties. 

 

It is necessary to emphasize that all theoretical distributions are developed as a family of 

distributions defined by a common rule through a generic constants known as parameters 

of distribution.  The particular member of the family is defined by fixing numerical 

values for the parameters that define the distribution. The probability distributions most 

frequently used in Mirce Mechanics to measure reliability, maintainability and 

supportability properties of machines are examined in this chapter. The most frequently 

used rules for distribution functions are exponential, normal, lognormal, and Weibull. 

Each of them will be discussed in this chapter. 
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Each of the above mentioned rules define a family of distribution functions.  Each 

member of the family is defined with a few parameters that in their own way control the 

distribution. All parameters can be classified in the following three categories: 

 

Scale parameter, A, which defines the location of the distribution on the horizontal scale. 

 

Shape parameter, B, which controls the shape of the distribution curves. 

 

Source parameter, C, which defines the origin or the minimum value that a random 

variable can have. 

 

Thus, individual members of a specific family of the probability distribution are defined 

by fixing numerical values for the above parameters. 

 

…………………………………. 

 

Example 7.1 

 

On average, a machine breaks down once every 10 days. Find the chance that less than 

five full days will elapse between breakdowns. 

 

Solution 7.1  

 

Based on the available data, the time to failure event, T of the machine considered is 

distributed in accordance to the exponential probability function with a scale parameter of 

10 days. Accordingly, the required probability is determined by the value of the CDF 

where x =5, thus: 

 
5

10( 5) (5) 1 exp 1 0.61 0.39P T F
  −    ≤ = = − = − =  
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Example 7.3 

 

A catering department installed 2000 coffee machines, which have an average life of 

2000 hours with a standard deviation of 400 hours. 

 

How many machines might be expected to fail in the first 1000 operating hours? 

 

What is the probability of a coffee machine failing between 1800 and 2400 operating 

hours? 

 

After how many hours would one expect 5 percent of the machines to have failed? 

 

Solution 7.3 

 

The operating life of this particular machine can be represented with a random variable, 

T, , whose probability distribution is defined, as N (2000,400). 

 

( 1000) (1000) ?P T F≤ = =  , According to Equation (7.7), 1000 2000 2.5
400

z − = = − 
 

 

From Table T1 (given in the appendix) the required probability is ( 2.5) 0.00621Φ − = . 

Thus, the expected number of failed coffee machines is 2000 0.00621 12.4 12× = = . 

 

 (1800 2400)P T≤ ≤ =?.  The required probability can be determined by making use of 

Equation (7.10), thus: (2400) (1.0)  0.84135F = Φ =   and. (1800) ( 0.5)  0.3085F = Φ − =  

Therefore, the probability of a coffee machine failing in the specified interval of 

operating time is (1800 2400) 0.84 0.31 0.53P T≤ ≤ = − =  

 

Here, the task is to determine the value of t that corresponds to a probability of 0.05, 

which could be expressed in the following way, (?) ( ?) 0.05F P T= ≤ = .   
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According to Table 1, for the Standardise Normal Distribution, the cumulative 

distribution function, F(z) for  z = -1.64  corresponds to the specified probability of 0.05.  

Thus, the task is to find the numerical value of t for which z = -1.64.  

20001.64
400

tz − = − ≡ Φ 
 

 

Making use of Equation 7.7, the solution becomes: 2000 1.64 1344
400

t t hr−
= − → =  

 

Example 7.5 

 

If we are interested in the age distribution of motor vehicles in the UK that possess a 

valid MOT certificate, the distribution function will be defined by three parameters 

because the certificate is not needed for vehicles younger than three years. Thus, the 

random variable T is defined as LN(1.75, 0.57, 3).  What percentage of the vehicles is 

less than five years old? 

 

Solution 7.5 

 

03.0
57.0

75.1)35ln()5()5ecertificat with vehiclemotorofge( =





 −−

Φ==≤ FAP
 

Thus, only three percent of vehicles with a valid MOT certificate are less than 5 years 

old. 

 

Example 7.6 

Assuming that the operational life of a certain component can be represented by the 

Weibull distribution with B = 4, A =2000, and C =1000, find the probability that the 

component will not fail in the first 1500 hours. 

 

Solution 7.6 

The required probability can be calculated by applying Equation (7.27), thus: 
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[ ]
41500 1000( 1500) 1 1 ( 1500) (1500) exp 0.939

2000 1000
P T P T F

 − > = − − ≤ = = − =  −   
 

 

Example 7.7 

 

A large number of identical relays have the time to first failure that follow a Weibull 

distribution with the parameters, A = 16 years and B = 0.5. 

What is the probability that a relay will fail during year 1 of operation? 

What is the probability that a relay will fail during year 5 of operation? 

What is the expected mean time to failure? 

 

Solution 7.7 

 

a.)   
0.51(1 ) ( 1 ) 1 exp 1 exp[ 0.25] 0.2212

16
F Year P x year

  ⇒ ≤ = − − = − − =  
   

 

b.)  
0.55(5 ) ( 5 ) 1 exp 1 exp[ 0.559] 0.572

16
F Year P x year

  ⇒ ≤ = − − = − − =  
   

 

 

c.)    Using the table T2, when B = 0.5,   [ ] 2.00  E[T] = 16 x 2 = 32 yearsE T
A

= ⇒   

8. Jointly Distributed Random Variables 
 

Thus far, probability distributions of single random variables have been addressed. 

However, we are often interested in probability statements concerning two or more 

random variables. In order to deal with them, with   X and Y two continuous random 

variables will be denoted.  This generic approach that is valid for discrete variables, 

where integrals are replaced by Sum symbols.  

 

The expression presented below are also applicable to the more general case of n random 

variables 1,  . . . , nX X . 
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• Joint cumulative distribution probability function is defined as: 

( , ) ( , )F x y P X x Y y= ≤ ≤  

 

• Joint probability density function density, for a given cumulative function, F(x, y), is 

given by   
2 ( , )( , ) F x yf x y

x y
∂

=
∂ ∂

 

In general, a joint density function is any (integrable) function f(x, y) satisfying the 

properties  

 
( , ) 0, ( , ) 1f x y f x y dxdy≥ =∫ ∫  

 

Usually, f(x, y) will be given by an explicit formula, along with a range (a region in the 

xy-plane) on which this formula holds. In the general formulas below, if a range of 

integration is not explicitly given, the integrals are to be taken over the range in which the 

density function is defined. 

……………………………………………………… 

 

9, Convolution of Independent Random Variables 

 

In this chapter we turn to the important question of determining the distribution of 

a sum of independent random variables in terms of the distributions of the individual 

constituents. 

 

9.1 Convolution of Discrete Random Variables 

 

In this section we consider only sums of discrete random variables, reserving the case of 

continuous random variables for the next section.  We consider here only random 

variables whose values are integers. Their distribution functions are then defined on these 

integers. We shall find it convenient to assume here that these distribution functions are 

defined for all integers, by defining them to be 0 where they are not otherwise defined. 
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Suppose X and Y are two independent discrete random variables with probability mass 

functions m1(x) and m2(x). Let Z = X + Y. We would like to determine the distribution 

function m3(x) of Z. To do this, it is enough to determine the probability that Z takes on 

the value z, where z is an arbitrary integer. Suppose that X = k, where k is some integer. 

Then Z=z if and only if Y=z-k.  Hence, the event Z=z is the union of the pair wise 

disjoint events (X = k) and (Y = z- k), where k runs over the integers. Since these events 

are pair wise disjoint, we have 

-
( ) ( ) ( ) P Z z P X k P Y z k

∞

∞

= = = × = −∑  

Thus, we have found the distribution function of the random variable Z. This leads 

to the following definition. 

 

Let X and Y be two independent integer-valued random variables, with distribution 

functions m1(x) and m2(x) respectively. Then the convolution of m1(x) and m2(x) is the 

distribution function m3 = m1× m2 given by  

 

3 1 2( ) ( ) ( )     for  ..., 2, 1,0,1, 2,....
k

m j m k m j k j= × − = − −∑
 

 

The function m3(x) is the distribution function of the random variable Z = X + Y 

………………………………………………………………….. 

 

9.2 Convolution of Continuous Random Variables 

 

In this section we consider the continuous version of the problem posed in the previous 

section: How are sums of independent random variables distributed? 

Let X and Y be two continuous random variables with density functions f(x) and g(y), 

respectively. Assume that both f(x) and g(y) are defined for all real numbers. Then the 

convolution f×g of f and g is the function given by 
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- -

( )( ) ( ) ( ) ( ) ( )f g z f z y g y dy g z y f x dx
∞ ∞

∞ ∞

∗ = − = −∫ ∫  

 

This definition is analogous to the definition, given above of the convolution of two 

discrete distribution functions. Thus it should not be surprising that if X and Y are 

independent, then the density of their sum is the convolution of their densities. This fact 

is stated as a theorem below 

 

Theorem:  Let X and Y be two independent random variables with density functions fX(x) 

and fY (y) defined for all x. Then the sum Z = X +Y is a random variable with density 

function fZ(z), where fZ is the convolution of fX and fY . 

 

To get a better understanding of this important result, some examples will be used. 

 

Example 9.4 

 

Suppose that two numbers are chosen independently at random from the interval [0; 1] 

with uniform probability density. What is the probability density of their sum? 

 

Solution 9.4 

 

Let X and Y be random variables describing our choices and Z = X + Y their sum. Thus 

 

X Y

1  if  0 1
f (a) = f (a) =

0  otherwise   
a< <




 

 

and the density function for the sum is given by 
1

X+Y X
0

f (a)= f ( )a y dy−∫ .  

For the values of a between 0 and 1 , 0 1a≤ ≤  it follows that 
0

( )
a

X Yf a dy a+ = =∫  
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For the values of a between 1 and 2 , 1<a<2  it follows that 
1

1

( ) 2X Y
a

f a dy a+
−

= = −∫  

Finally: 

       if  0 1
f ( ) 2 -     if  1< 2

 0       otherwise   
Z

z z
z z z

≤ ≤
= <



 

 

9. 3/ Sum of Two Independent Exponential Random Variables 

 

Suppose that two numbers are chosen at random from the interval [0;1) with an 

exponential density with parameter λ.. What is the density of their sum?  

 

Example 9.5 

 

It is an interesting and important fact that the convolution of two normal densities with 

means µ1 and µ2 and variances σ1 and σ2 is again a normal density, with mean  µ1+µ2   

and variance  2 2
1 2σ σ+  

 

We will show this in the special case that both random variables are standard normal. The 

general case can be done in the same way, but the calculation is more complicated.  

Suppose X and Y are two independent random variables, each with the standard normal 

density. We have 

 
2

2 22 2 2 2

2

( )
2 22 2 4 4

1( ) ( ) then
2

( ) ( ) ( )

1 1 1 1
2 2 2

z

X Y

Z X Y

y z y zz y y z z

f x f y e

f z f x f y

e e dy e e dy e e dy

π

π
π π π π

−

− −   ∞ ∞ ∞− − −− − − −   
   

−∞ −∞ −∞

= =

= ×

 
 = = =
  

∫ ∫ ∫

¸ 
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The expression in the square brackets is equal to 1, since it is the integral of the normal 

density function with µ = 0 and 2σ = , This is follows: 

 
2

41( )
4

z

Zf z e
π

−
=

 
 

9.4 Independent Trials 

 

We now consider briefly the distribution of the sum of n independent random variables, 

all having the same density function. If  1 2,  ,  . . . ,   nX X X  are these random variables 

and 1 2= ...  n nS X X X+ + + is their sum, then we will have 

( )1 2
( ) ...... ( )

nSn X X Xf x f f f x= × × ×
 

where the right-hand side is an n-fold convolution. It is possible to calculate this density 

for general values of n in certain simple cases. 

 

10.  Limit Theorems 
 

The most important theoretical results in probability theory are limit theorems.  From all 

of them the most important are those classified as “laws of large numbers” or under the 

heading of “central limit theorem”.  

 

10.1 Markov’s Inequality  

 

If X is a random variable that takes only nonnegative values, then for any value a>0
( )( ) E XP X a
a

≥ ≤
 

 

10.2 Chebishev’s Inequality  
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( ){ }

2

2

2

If X is a random variable with finite mean  and variance ,  then for any value k>0

P X k
k

µ σ

σµ− ≥ ≤
 

 

The importance of these inequalities is that they enable us to derive bounds on 

probabilities when only the mean or both the mean and variance, of the probability 

distributions are known. Of course, if the actual distributions were known, then the 

desired probabilities concerned could be exactly computed and there would be no need to 

seek bounds. 

 

Example 10.1 

 

Assume that it is known that the number of parts produced in a specific factory during a 

week is a random variable with mean of 50. 

 

a) What is the probability that the next week the number of parts produced will exceed 

50? 

b) If the variance of weekly production is 25, what is the probability that the next week 

production will be between 40 and 60? 

 

Solution 10.1: 

 

Let X be the number of parts that will be produced next week. 

a) By Markov’s inequality ( ) 50( 75) 0.66
75 75

E XP X ≥ ≤ = =  

 

b) By Chebishev’s inequality ( ){ } 2

2550 10 0.25
10

P X − ≥ ≤ =  

Thus, ( ){ } 150 10 1 0.75
4

P X − < ≥ − = , which means that the probability that the next 

week production of parts considered will be between 40 and 60 is at least 0.75. 
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As Chebishev’s inequality is valid for all distributions of the random variable X, it is not 

to be expected that the bounds of probability is always close to the real values.  

 

[ ]Proposition 3.   If  Var(X)=0, then   ( ) 1P X E X= =  

 

This practically means that the only random variable having variance equal to 0 are these 

that are constant with probability 1. 

 

10.3 The Weak Law of Large Numbers 

 

1 2 n

1 2 3 n

Let X , X ,.....X ,  be a sequence of independent and indetically distrubuted
 random variables, each having finite mean E[X]= . Then, for any >0,

X X X ,.....X 0P n
n

µ ε

µ ε
 + +

− > → → ∞ 
 

 

 

 

The weak law of a large numbers was originally proved by Jacob Bernoulli for the 

special case where the X are 0-1, which is a Bernuolli, are random variables. The general 

form of this theorem was proved by the Russian mathematician A. Khintchine (1894-

1959) 

 

10.4 The Central Limit Theorem 

 

This is one of the most remarkable results in probability theory. Loosely put, it states that 

the sum of a large number of independent random  

 

Let  1 2,  ,  . . . ,   nX X X be a sequence of independent and identically distributed random 

variables, each having finite mean and variance. Then the variable 

1 2 3 ..... nX X X X n
n

µ
σ

+ + + −  tends to be a standard normal variable as, thus: 
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2

1 2 3 2..... 1 ,
2

a x
nX X X X nP a e dx n

n
µ

σ π
−

−∞

+ + + − ≤ → → ∞ 
  ∫  

 

The first version of the central limit theorem was proved by DeMoirve around 1733 for 

the special case where the X are Bernoulli random variables with p=1/2. This was 

extended by Laplace to the case of arbitrary p.  However, his proof was not rigours. A 

truly rigorous proof of the central limit theorem was first made by Russian mathematician 

Liapounoff in the period of 1901-02. 

 

10.5 The Strong Law of Large Numbers 

 

Probably, this is the best-known result in the probability theory. It states that the average 

of a sequence of independent random variables, having a common distribution, will, with 

the probability of 1, converge to the mean of that distribution. 

 

1 2

1 2 3

Let , ,..... ,  be a sequence of independent and indetically distrubuted
 random variables, each having finite mean [ ]. Then, with probability 1, 

.....

nX X X
E X

X X X X n
n

µ

µ

=

+ + +
→ → ∞

 
 

That is, the strong law of large numbers states that  

( ){ }1 2lim .... ) / 1nn
P X X X n µ

→∞
+ + + = =

 
 

As an application of SLLN, suppose that a sequence of independent trials of some 

experiment is performed. Let E be a fixed event of the experiment and denote P(E) the 

probability that E occurs on any particular trial. Letting: 

 
th 

th 

1 if E occurs on the i trial
0 if E does not occurs on the i trial

X


= 
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We have by the string law of large numbers that with probability 1,  

 

1 2 3 ..... ( ) ( )X X X X E X P E
n

+ + +
→ =

 
 

Since  1 2 ..  nX X X+ + +  represents the number of times that the event E occurs in the 

first n trials, we may interpret the above expression as a stating that, with probability 1, 

the limiting proportion of time that the event E occurs is just P(E). 

 

The strong law of large numbers was originally proved, in the case of Bernuolli random 

variables, by the French mathematician E. Borel (1871-1955). The general form of the 

strong law, presented above, was proved by the Russian mathematician A.N. 

Kolmogorov (1903-1987). 


