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Chapter 1:   Truth and Science 
 
1.0 The whole truth 

Many years ago, at the break of Tuesday dawn, I found myself lying in a hole in the ground, 

along with three other fellows, in the outskirts of Kibbutz Dan in the north.  The early sunrays 

had not yet reached us and from the direction of “Tel Hamra”, then in the Golan Heights of 

Syria, a barrage of 120mm Mortar shells was heading our way. The three fellows were 

paramilitary academic cadets and had not yet worn uniform. I was a first year physics student 

and a fresh reserve soldier – a young, frightened paratrooper.  Random events of war brought 

the four of us together and at random we could have all met our end should a single shell have 

landed in our hole. There is something particularly awful about a mortar shell, the whistle – it 

is a low pitched windy sound that increases in volume and pitch until it tears ones ears and 

freezes the blood. It is the sound of death searching for your wretched soul.    

This went on continuously for fourteen hours, from the early hours of the second day of the 

“Six Days” war, till the evening. Slowly but surely horror started taking its toll. One guy had 

his jaw trembling so fast and strong that it threatened to break it. This is, as I learned later, a 

well-known phenomenon of extreme prolonged fear – the others breathed heavily and one 

complained of pains in the chest, again a known phenomenon that can lead to heart failure. As 

things were, I became, without my will or choice, the leader of this poor gang laying hours in 

a one-meter diameter hole in the ground  (and, boy, was I happy it was not any bigger). At a 

certain point I had realized that something must be done to reduce the level of anxiety and 

avoid serious consequences. I tied the jaw with a sleeve of my shirt, and then, quietly and 

most seriously, I explained that the mortar shells are flying faster than the speed of sound, 

hence, when we hear the whistle the shell has already passed us. I recruited all the possible 

authority in my voice including the fact that I am a potential physicist, to tell them a story that 

was a complete lie – from beginning to end. Mortar shells fly much slower than the speed of 

sound.  Following that story the state of the group improved miraculously. Every time the 

terrible whistle was heard (about every ten seconds) a sigh of relief was heard. I, of course, 

suffered twice, not only did I tremble with fear just as before but now I also had to fake sighs 

of relief so as not to betray the lie. 

I believe they know the truth today. I hope they do not hold it against me – I meant well. I 

also thought that if I am proven wrong, that is, if the end of a whistle is an explosion in the 

hole, well, they will not be able to complain against me, at least not in this world. 
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Why do I start a discussion about “truth” with a story about an outright lie? 

 There are two reasons. First, this story demonstrates that even the clearest lie will be 

favorably accepted when the conditions are right for it.  We tend to accept lies if they fit what 

we wish to hear. 

 Second, and more important is that I believe that the “Truth” is probably the single most 

important concept in the web of our morality. Yet, I am afraid of dogmas and 

fundamentalism.  Sometimes one should lie, sometimes one must lie – but, only under 

extreme conditions and with a clear intent to do good for others possibly at ones own expense.  

Having been so clear about a lie it is reasonable to ask: What then is “truth”? 

The dictionary writes about “truth” the following: “Something correct and loyal, something 

that can be believed. The opposite of lie” 

That does not help much in understanding the definition of “truth”. It verbalizes a general 

understanding we all have as to what truth is. But it is in no way a definition. In fact, any 

attempt to define “truth” is bound to encounter extreme difficulties. One very soon realizes 

that there cannot be a single definition of “truth”. In fact one can identify at least four 

categories of truth. 

 

1.1 Mathematical Truth 

The simplest type of truth is “Mathematical truth”.  Its uniqueness lies in the way it is 

constructed. First a number of statements are set. Such statements have two properties: 

They are assumed to be pure truth and do not require proof. 

 They cannot be proven and no one will ever be able to prove them. 

Such statements are called “Axioms”. Once the basic set of axioms is laid “truth” is defined 

as: 

 Any statement is true if and only if it can be proven from the basic axioms i.e. if it is a logical 

outcome of the axioms.  

Here is a partial list of basic mathematical axioms (1) as outlined by the German 

mathematician Hilbert (2). 

There is one and only one line passing through any two given (distinct) points. 

Every line contains at least two distinct points, and given any line there is at least one point 

not on it. 
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If A,B,C are distinct points on the same line, one of the three points lies between the other 

two. 

(Attributed to the Greek mathematician Euclid) – Given a line L and a point A not on the line, 

then one and only one line can be passed through the point A that will not intersect the line L, 

in fact, the well known statement that “Two parallel lines never meet”.  

Altogether there are 15 such axioms.  

 None of the above statements can be or need be proven. One may note that within the axioms 

concepts such as “Point”, “Line” and others (bolded) are used. These concepts are again not 

proven or defined. Their existence is axiomatic and one may state that they are defined by 

their use in the axioms. That is, any two concepts that have the properties described by the 15 

axioms can be viewed as a point and a line respectively. Axiom 15 (not quoted here) 

guarantees the existence and nature of the “Continuum of points” which is an essential feature 

of the real numbers. 

The type of truth defined above has a number of interesting characteristics. First, it does not 

apply to all possible statement. There are many statements that do not result from the axioms 

and do not negate them. The statement “Jennet is a beautiful girl” or the statement “The moon 

inspires young lovers” does not result from any axiom nor does it (so we hope) contradict any 

axiom. Thus, “mathematical truth” creates a natural trichotomy. It divides all the statements 

into three exclusive realms or groups:  

• “True” statements, namely, those that can be proven from the axioms 

• “False” statements, those that contradict any of the axioms   

• “Not related” – those that do not result from, and do not contradict, any axiom. 

The definition of “mathematical truth” a priori limits the realm of application of mathematics.  

…………………………………………………. 

1.2 Physical truth 

A second category is “Physical truth” or “Scientific truth”. This “truth” is fundamentally 

different from mathematical truth. Indeed there are axioms in the physical theory. Yet, the 

definition of truth has nothing to do with them. Physics, unlike mathematics has a lot to do 

with the universe in which we exist. In fact, physics is about this universe and its rules.  The 

definition of physical truth is both simple and deep. It centers on the “physical experiment” 

and states: 
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A statement is true if and only if it can be verified in an objective scientific experiment i.e. if 

the results obtained from the statement fit those of the experiment. 

The nature of physical axioms is different from that of mathematical axioms. These axioms 

are not generated from inward thinking that can be done in a closed capsule. Rather, they are a 

result of observing the universe around us and making assumptions about it. We will next 

consider some of these axioms and deduce some of the, well known, physical laws resulting 

from them. 

Homogeneity of time: Consider a physical experiment such as the free fall of an object of 

mass m, done at any point is time. One can watch the experiment, one can measure the 

velocity of the falling object at various points and one can see the object hit the floor. It is 

quite obvious that if exactly the same experiment will be performed one hundred years later 

the observer will see and measure exactly the same results. This is quite trivial – or is it? How 

do we know that the observer will see and measure exactly the same results?  How do we 

know that the laws of physics do not change over time? 

……………………………………………………………. 

1.3 Religious Truth 

The third category of “truth” is the “religious truth”. This truth in general is similar to the 

mathematical truth in that it has an axiom. The existence of an omnipotent divine entity is 

axiomatic in every religion. Yet, this truth differs from the mathematical and physical truths 

in two critical aspects. First, there is no trichotomy. Nothing is beyond the realm of religious 

truth. Every aspect of life and of the universe is contained in the religious truth. The second 

critical element is that unlike mathematics or physics, religious truth does claim about itself  

“I am the truth”.  This manuscript is not about religion. The religious truth is mentioned only 

for completeness 

…………………………………………………………………… 

1.4 Definition of Science  

At this point one can define what science is.  A possible definition of science could be:   

Any realm of human activity in which two conditions are fulfilled: 

A systematic study of laws and rules that enables prediction of future behavior of systems to 

be done 

A definition of “truth” exists which is independent of human beings. 
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In the spirit of the uncertainty described above I would not mind to have other opinions on the 

definition of science. Furthermore, according to this definition literature will never be a 

science. Politics is not a science, unless one adopts a definition of truth as “the truth is what I 

say”, which immediately negates the above definition.  

However, being a science does not make anything good or bad. Nor does it put any discipline 

higher or lower on any ladder of values. It is just a matter of definition. 

Indeed the above discussion does not solve the question of the fourth truth, that of our life 

reality, of life and everything in it. It does, hopefully, add just a bit to the clarification of the 

concept of science and the complexity of reality.  

It is at this point that one can ask the question: Is system engineering a science?  

  

Chapter 2: About the process 
 
2. 0 Transport of particles 
 
The road we are taking should lead us into system engineering. The path started with a 
definition of the truth and our next step involves a look at neutron behaviour. The reader will, 
hopefully, be happy to note that he needs to know very little about neutrons in order to 
understand the principles of their behaviour and it is those principles that are of interest to us 
in this discussion. 
A neutron is a very small particle. It moves in straight lines since it is neutral and it collides 
with the nuclei of the medium in which it moves. Upon collision a number of “nuclear 
reactions” can take place. Among these reactions there are: elastic scattering – in which the 
neutron bounces off the nuclei. The kinetic energy is conserved and shared between the 
neutrons kinetic energy and the nuclei, much like the experiment in Figure 2. No energy is 
lost to the internal structure of the nuclei. Inelastic scattering is similar except that a certain 
portion of energy is absorbed by the nuclei and excites its internal structure. Absorption 
reaction is such that the neutron disappears (being absorbed into the nuclei) and in general 
some of the absorbed energy is emitted in the form of a photon or other particles. In general, a 
neutron is completely defined by indicating its location r , the direction of motionΩ  and its 
energy (velocity) E. The neutron thus has 6 degrees of freedom (3 for its location, 2 for the 
direction and 1 for the energy). The vector: ),E,r(P Ω=  indicates a point in a phase space 
(which is a fancy name for the three elements of the vector) in which a neutron enters a 
collision with a nucleus. As the neutron moves in the medium, the distance to its next 
collision is a random variable. That random variable has a true exponential distribution, nice 

and simple. The mean distance between consecutive collisions is denoted by 
t

1
Σ

 and tΣ  is 

called “the total cross section”.  Thus, if x is the distance to the next collision its probability 
distribution function (pdf) would be:  

 2.1         x
t

te)x(f Σ−Σ=  
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This means that the probability that the next collision will occur at a given distance cx from 

the starting point and within a small interval cx∆  is given by: 

2.1a     c
x

tcc xex)x(f ct ∆Σ=∆ Σ− .   

How then does nature choose the point at which the neutron will have the collision?  The fact 

that the process is controlled by equation 2.1 and 2.1a means that nature has some way of 

guaranteeing that the probabilities of 2.1a will be realised. How does it do that?  Let us 

assume that cm
t

201
=

Σ
, cm02.0x c =∆  and cmc 10x = . Equation 2.1a then states that the 

probability of the neutron entering a new collision somewhere between 9.99cm and 10.01cm 

is 0.0121. Thus out of 10000 distances between collisions about 121 should be in that range.  

Indeed, in N experiments the number should get closer and closer to 0.0121xN, as N increases 

to infinity. This is a result of statistical laws such as the Chevicheves inequality and the weak 

law of large numbers (5). How would nature guarantee that in 10000 experiments, about 121 

will fall in that range? Does nature remember the distances in former collisions? That is 

highly improbable, as no such mechanism has ever been observed. Nature does not remember 

such past events. Rather, nature makes sure that each event is conducted such that equation 

2.1a is maintained.  We do not know exactly how nature does it but here is a possible way.  

Let ξ  be a random variable uniformly distributed in the interval [0,1].  Being uniform means 

that its pdf is constant over that range and hence 1)(f ≡ξ and ξ∆=ξ∆ξ)(f  hence the probability 

of this random variable to take a value in any given interval is simply the size of the interval.  

Assuming that nature can do that one may now consider the relation   

2.2   ct x
c e1)x(F Σ−−==ξ   

F(x) is the cumulative distribution function (Cdf or cdf),  of x. The value of cx  may be 

obtained from this equation onceξ  is known in the form  

2.2a   
t

c
)1(Lnx

Σ
ξ−

−=  

 This guarantees that the values of x so obtained have the correct distribution because 

equation 2.2 implies that c
x

t xe ct ∆Σ=ξ∆ Σ− (just take the differential of 2.2).  Since the 

probability of cx to be in an interval cx∆  is identical to ξ∆  it is obvious that equation 2.1a is 

fulfilled. This procedure is easily generalised. Obtaining x from the equation: 

2.2b   )x(F=ξ  
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Equation 2.2b implies that, for any Cdf, F(x), the probability of x to be in the interval x∆ is 

ξ∆  which can be written as: 

 2.2c   x)x(fx
dx

)x(dF
∆=∆=ξ∆  

 Thus, condition 2.1a is fulfilled and the solution of 2.2b for x is a proper sampling method 

for any distribution.  

This is one option of nature to “sample” a random variable from any given distribution f(x). 

While it is not sure that nature chooses this method to sample random variables in any natural 

phenomena it is clear that we can perform such sampling on a computer. 

First choose a uniform random variable (using a routine that exists on every computer 

including some hand calculators) and then solve equation 2.2b for cx . The random variable is 

then guaranteed to follow the required distribution.  This is demonstrated in Figure 2.1 below. 

The Exponential distribution is shown (solid grey line) and a histogram of 20000 sampled 

points using the above algorithm is plotted (+ markers). It is seen that the histogram follows 

the required distribution. Indeed, the match between the histogram and the function will 

improve as the sample size is increased. This is guaranteed by the weak law of large numbers. 

………………………………………………………………………….. 

 

Chapter 3: A few words more about the transport Equation 
 
3.0 Transport and free will 

It was stated in the last chapter that the transport equation (2.21) is the foundation of the science of 

system engineering. The general structure of the equation and its existence were explained and proven.   

3.1 
t

B ' 0

(P) (B, t) S(B, t) K(B ', t ' B, t) (B', t ')dt 'ψ = ψ = + → ψ∑∫  

Being the foundation of this science means two things. First, every system obeys this equation. Recall 

that this is not a single equation, this can be a simultaneous set of billions of interrelated equations. All 

the information about the properties of the system and its components is stored in the transport kernel 

)t,B't,'B(K → and this information is sufficient to know everything about the future of the system, or 

any aspect of it. In fact, this means that the function )P(ψ contains all the information about the future 

of the system, availability, reliability, spare parts required, throughput and anything else.  

Whenever a statement such as “the future of the system is known” is presented, one should 

immediately get worried about the fate of “free will”. After all, a system may incorporate human 
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beings operating it and if we state that the future of the system is known, then we may fall into the trap 

of relieving the operators from any responsibility for this future. Scientifically they may claim that 

they were merely “Operated” by the rules of science and everything they did was predicted a priori 

having nothing to do with their will or intentions. This is, in fact, quite an old problem. When Newton 

came out with his three laws of mechanics, it was argued that if all the universe can be assumed to be 

made of small atoms, and if all the forces acting on these particles are known at T=0 (the beginning of 

the Universe) then the behaviour of the Universe, and all it contains, can be predicted by solving 

Newton’s equations. This notion, which appears everywhere in classical physics, actually throws the 

concept of “free will” straight out of the main door of philosophy. Indeed, even if these equations will 

never be solved by humans, they still have a solution, a unique solution, because they are second order 

differential equations with boundary conditions at T=0. Indeed, one may claim that we will never 

know the future because we will never be able to solve the equation. But, this is not about “knowing 

the future”! This is about the predetermination of that future. The very fact that there is a unique 

solution is the critical element, because if there is a unique solution it means that every event, every 

occurrence has been determined uniquely at T=0 and nothing we do can affect these events. In fact, 

everything we do is part of that unique solution. We can do only one thing and the thing we do has 

already been determined by the conditions at T=0. This is not a trivial point. One can easily agree that 

if there is no life in the Universe then the future of the Universe is predetermined by the initial 

conditions. Whether it expands or shrinks, creates gas clouds, galaxies, nebulas, stars and planets, 

everything on the time line is controlled by the initial conditions and by the laws of physics, 

determined also at T=0, remember the homogeneity of time. If life and intelligence are considered as 

just additional ordered molecules with complex interactions, just very complex machines, then they 

are part of this Universe just like the interstellar molecules and the future is again predetermined. That 

eliminates “free will”, responsibility and the ability to affect the future.  This is a serious moral 

dilemma. It was eased by the introduction of quantum physics. Quantum physics introduced two new 

elements “true stochastic events” and “the effect of the observation”. The first element suggests that 

some of the basic physical laws are of a true statistical nature. 

Consider the throw of a dice. We use this example to describe a statistical experiment in textbooks 

because every time the dice is thrown a different result is expected and it is a beautifully simple 

experiment to demonstrate the meaning of a probability function and its applications. But, is the throw 

of a dice a “true” statistical experiment? Not really. The reason one obtains a different result is that 

each throw is slightly different, the angle of throw, the position of the dice, the velocity etc. If one 

could repeat each experiment exactly the same then in each experiment exactly the same result would 

have been obtained. This creates no problem at all for the application of statistical methods. But, it 

raises the question: Are there true statistical experiments? Or is it the case that statistical experiments 

are actually deterministic experiments with many unknown and varying “internal variables”? Quantum 

physics sets this issue stating that “all events in the subatomic domain are of true statistical nature!”. 

The question of whether a neutron will be absorbed or scattered is truly a probabilistic event. The time 
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of decay of an excited nuclei or atom is a true statistical event. This indeed means that there cannot be 

a “unique deterministic” future. There can be many futures and the conditions at T=0 do not define the 

future uniquely. Furthermore, quantum physics suggests that the state of a physical system depends on 

the question of whether it is observed  (measured) or not. The observation of a system affects its 

quantum state and changes the future. Hence, since only humans perform conscious predetermined 

observations it is within their free will to affect the future. In the case of equation 3.1 the situation is a 

bit simpler but bears a number of similarities. Recall that this equation is related to the “average” event 

rate. In fact, it will provide us with knowledge of the average behaviour of a system. Still, if many 

systems are observed each one may have a “different life history”. Hence for every property of the 

system there must be a distribution of this property. We will further discuss this when considering the 

concept of “warranty” but for the time being we just stress the fact that no system will have a fixed 

unique predetermined future. Statistical laws, expressed in the transport kernel, control the system and 

its life is a stochastic process. Furthermore, in creating models of systems we may introduce the 

human operator as part of the system. But, in our models we will leave little room for “free will”. We 

assume that the operator will behave as instructed and as expected in good working practice. We may 

introduce models of human errors or even account for malfunctions resulting from fatigue or 

negligence, but we most probably will not introduce premeditated sabotage that is an expression of 

free will. If one would insist on incorporating all the variety and diversity of human behaviour into the 

model, then it will be easy. We will just simply state that we do not have a green clue as to how to do 

it. In that context it is worth mentioning the question often rose of whether equation 3.1 can be used 

for predictions in economics. The current answer is: no, it can not! This is for a number of reasons. In 

principle an economic system does obey equation 3.1 in that it can be described as an aggregate of 

components: human beings, machines, factories, shops and products, interacting with each other and 

evolving in time and in the space of the possible states of such a system. Yet, we do not have a clue as 

to the structure of this space, except for simple academic, non-realistic cases. Secondly, the nature of 

the interactions is vague. It does involve the element of human behaviour and free will  (suddenly 

everyone buys this gadget, and then no one buys something else). At this time we are simply unable to 

construct the transport kernel and therefore we are not able to address the problem through this 

equation. I personally like it this way and I do believe that this will remain forever the case because 

otherwise it would mean that free will does not exist. It would mean that we have managed to 

“correctly” describe human beings as predictable machines. I think we will not be able to do it. I hope 

we will not. I hope that Asimov’s science of “Psychohistory” will remain forever science fiction.  

With the above reservations it is claimed that equation 3.1 does provide predictions of every aspect of 

the system behaviour. Let us first review how the event rate is related to practical quantities. 

……………………………………………………. 
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4. The analysis and optimisation of spare parts and other resources 

“A software package is better if it requires less data”, Anonymous expert 

 

4.1 General discussion 

The problem of spare parts and resources is one of the most basic questions desalt with by the 

human kind since the beginning of time. It is as old as human history and it is not going away. 

One can easily envision our early ancestors roaming the savannahs of today’s Ethiopia 

running after the deer, and away from the lions. How long should the chase continue? How 

many deer is enough? Every additional hour in the open space of the flatland increases the 

risk of becoming food. Yet, if more dears are hunted their meat can be dried up on the cave 

fire and increase the chance of surviving the soon coming dry season when food is scarce? 

Did they ever do calculations?  

There are n  people in the clan. Each consumes a minimum amount of λ  pounds of meat 

every day.  The dry period extends over, say, T days, the weight of an average deer is w. 

Hence, We should have a total of: n T
w
λ  deer caught.  One does not think they actually did 

such calculations. But, they could! In fact, one can envision a gathering of the hunters at 

night, with the fire burning for light and protection. The naked wise guy of the clan quietly 

speaking about: Introduction of the variability of the length of the dry season and establishing 

confidence intervals for survival. i.e. treating T as a random variable. Introducing the 

variability of the weight of a dear into the equation. Introducing the variability of human daily 

meat consumption (We can make these old useless scientists eat less – Shouts the crowd). 

Recycling? - The possibility to go out during the dry season, and get some more food. Before 

we know it our ancestors would have, apart from the urgent need to obtain food, an urgent 

need to solve equations that we do not know how to handle even today.  Indeed, eating the 

scientists would have both eliminated that problem and eased the food problem. 

What then is the advance we made in the last three million years? 

Consider the following simple example: A company operates 25 heavy machines. Each 

machine contains 8 identical components. If any of these components fails the machine is 

down. Upon failure of a component there is a probability of 0.6 that it can be repaired without 

replacing it (this takes 1 hour), otherwise the component must be replaced. The above 

components could be heavy tires on trucks. Also, a replaced tire is discarded and cannot be 

refurbished or used again. The failure rate of a tire is 1.2x10-3 1/hour.  How many spare tires 

should be stored for a period of 1 year?  
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Unlike our ancestors, we do not need to run after dears, or away from lions. We just go to the 

closest grocery and fill our refrigerator to our hearts desire. This leaves a lot of spare time that 

we can use to invent methods to calculate how many spare parts are needed. 

We will bring a number of approaches to this problem.  

4.1.1 Ancestors’ approach: This method is exactly the same as the one used above to 

calculate how many deer are needed. n=25 trucks, m=8 tires per truck, T=8760 hours of 

operation. On the average, trucks operate only 16 hours every 24 hours, namely, 0.6 of the 

time and, thus, the average number of failed tires would be: S=0.4x0.6xλnmT or 504.0 tires. 

In this calculation only 0.4 of the failure rate is used as 60% of the failures can be repaired on 

location without a spare. 

4.1.2 Modified ancestors-approach - Sufficiency: 504 spares are quite a lot of spares for a 

small fleet of trucks! But, we know that this number is just the average number of failures. 

The actual number of failure is a random variable having a Poisson distribution (Not exactly). 

In fact the probability that this amount will suffice for the whole period is near 50%. That 

means that there is a probability that we will run out of necessary spares long before the year-

ends. How can we protect ourselves from this? It is easy; the probability to have exactly k 

failures is given by:  

k uu eP(k | T)
k!

−

=    where u 0.4x0.6x nmT= λ   

The probability that S spare tires will suffice for the whole year is the same as the probability 

that there will be less (or equal) than S failures hence:    

4.1  
k 0.24 nmTS

s
k 0

(0.4x0.6x nmT) eP (S)
k!

− λ

=

λ
=∑   

The table shows the number of spares, S and the “sufficiency, Ps (S), assigned with each 

quantity.  

S 400 450 500 520 550 560 570 

Ps(S) 7.9x10-7 7.76 x10-3 0.441 0.769 0.97

9 

0.99

3 

0.99

8 

Table 4.1: Sufficiency table for replacement with total condemnation of failed units. 

It is seen that if we want a confidence of 76.9% that {the amount of spares will be sufficient 

for the whole period} we need to purchase 520 spare tires. To obtain a sufficiency of 99% we 

need about 560 spares.  
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The reader may put himself at the position of the decision-maker. How many spares would 

you then decide to purchase? 400, those gives almost zero confidence, or 560?   

It seems to be quite logical for the decision-maker to ask (although it is rarely asked): What 

would be the performance of my fleet with any given number of spares? What would be the 

availability of trucks as function of time throughout the year?  This is not difficult either: 

If no spares are purchased then the survival of a single truck is given by: 

4.2 0.4x0.6 mtR(t) e− λ=  [The probability not to have a single failure in a track up to time t] 

This will be the reliability of a single truck. Since, with no spares, trucks are un-repairable, 

the availability and reliability are identical. Thus, this is also the fraction of operational trucks 

at time t.  

If S spares are purchased then, assuming negligible repair time, the availability of a single 

truck will be unity until all S spares are exhausted and then it will decrease at the same rate as 

in 4.2. Hence, the unavailability at any point of time, t, is the probability density to have S 

failures, in the whole fleet, up to an intermediate time t’<t multiplied by the probability to 

have a single failure in the system in the interval (t-t’). All this averaged over t’. The 

probability density of having S failures in the field up to time t’ is given by the Gamma 

distribution,  

4.3  
** * S 1 t

S
( t ') eG (t)

(S 1)!

− −λλ λ
=

−
 where * 0.4x0.6mnλ = λ  and the probability of a single failure in 

the interval (t-t’) is given by ( )x0.4x0.6x8x(t t ')1 e− −λ−  hence the unavailability:  

4.4     ( )
*t * * S 1 t

0.4x0.6x8

0

( t ') e (t t ')U(t) x 1 e dt '
(S 1)!

− −λ
−λ λ λ −= −

−∫  

This integral can be worked out and the results for the availability obtained are shown in 

Figure 4.1:  
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Figure 4.1: Trucks availability as function of time for various spare quantities. 

 

For the decision-maker, the above Figure should be very useful. At this point one must decide 

what is the performance target of the system? How much truck does one really need in order 

to fulfil the goals and tasks of the organisation? After all, not all the trucks are working all the 

time?  Let us assume that the requirement is:  “The average number of operational truck 

should not go below 20 at any time during the year.”  The operators of the system must set 

this goal. Without it we really do not know what the system is needed for and one has no basis 

for a decision concerning spare parts or any other resource.  

With the “system performance target” defined one can see that with 500 spares the 

availability drops, at the end of the year, to 0.56, with 520 spares the drop is to 0.82. Thus, 

purchasing 520 spares will provide the required performance.  

A few conclusions can be drawn at this point:  

The system does not necessarily behave the way we would like it to. The availability curve 

does not spread evenly throughout the year, and there is no steady state availability. The 

yearly average availability of the system with 400 spares is 0.82. This means that if the target 

would be an average yearly availability of at least 20 trucks (i.e. the time dependent 

availability averaged over a year) then 400 spares would be enough. This, of course, would 

create a catastrophe because for the last two months of the year there will be no trucks at all 

(see Figure 4.1).  Setting systems target based on a time average could be a serious mistake. 

One should always observe the time behaviour of the performance measure, unless one is 

confident that the performance is independent of time. 
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It is quite tempting, and often done, to look at the sufficiency and chose a healthy confidence, 

such as 0.995.  This would be the case particularly in organisations in which the spare parts 

department is responsible only for availability of spare parts and is not directly responsible for 

the actual operation of the system. This, in fact, includes all organisations. The spare parts 

department is aware of the simple fact that if spare parts are missing when required, they will 

look bad. If spare parts are available when required they look good. If lots of spare parts will 

remain in stock with no use, nobody will notice. By the time the organisation starts feeling the 

pain of losing a lot of money in unknown directions, and taking into account the fast rate of 

positions changing in today’s world, there is a very good chance that the decision makers 

responsible for the “dead storage” will be already consulting in another company. Thus the 

modified ancestors-approach does have a reasonable level of success. A decision to buy 570 

tires would seem quite reasonable. It is actually 50 spares more than necessary. It is an 

additional 10% on the budget that is actually thrown away. 

Spending 10% on tires may not be a lot, but there are other spares like a jet engines at 2 

million dollars each, pumps at $ 48000 each and so forth. The discussion above applies to all 

of them. A saving of 10% over the expenses of any industry makes a huge difference. 

Can one still save more on these spare parts? 

…………………………………………… 

 

Chapter 5: Bedtime stories for System Engineers 
 

This chapter is devoted to stories. Stories that have been lovingly collected through some 20 

years of interaction with the industry in an attempt to transfer to them some of the modeling 

methods described in this monograph. One may justifiably wonder why would one bring 

stories into a book so nicely loaded with mathematics. Yet, there is a good reason for it. The 

mathematics is not intended to “stand alone”. It is not just for the beauty of it that this book is 

written, although this beauty is the one and only true personal motive in it. It is for the 

positive impact that the use of such modeling may have on the industry and on our lives. 

Imagine a possibility to reduce the cost of all industrial expenses by 2%, or by 10% - 

wouldn’t that give us enough funding to both educate and feed properly all the children in the 

world and an ample amount will remain for improving the environment? Well, it is our 

experience that the money that can be saved is definitely in this range, may be higher. Also 

the examples brought herein are attempting to connect the mathematical formulation to the 

real daily problems of the industry.  
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A fighter jet cannot take a turn of 25G. – Why? 

 There is a human pilot, inside the aircraft, which cannot take this pressure! 

 It is the wonder of the human brain and body that created the industrial marvel and that limits 

it! 

The human being is a key element in any industrial system. It is he who creates it and 

operates it. It is he who attempts to solve the problems of making it good and efficient and it 

is he who limits its efficiency and design. Admittedly, one finds it extremely difficult to bring 

the human into the model. The human operator can be easily modeled if his operations are 

predefined and he serves as an additional component with a set of predictable, possible 

actions. But, it is next to impossible to consider his personality, free will, likings and 

disliking, sympathy etc. All these indeed come into play when one attempts to introduce a 

new way of thinking into an industry. Being such an essential part of the industrial process the 

human factor deserves a very serious discussion. The author is far from being able to make 

any such serious discussion. So, a set of stories with just a pinch of moral in them present the 

best substitute. 

5.1 Zero failures 

 I was once invited to a general meeting of the Maintenance and logistic staff of a big 

company dealing with Medical equipment (CAT scans and the likes of it). When I say that I 

was invited, I do not really mean that anybody bothered to either call me or write to me and 

actually invite me. This never really happened. What I truly mean is that through my ongoing 

connections I heard about this meeting and managed to, kind of, invite myself to give a talk.  

The meeting went very well with a lot of enthusiasm and viability. The head of the relevant 

department started with a rock curving speech about dedication to the customers being the key 

to success. Above his head proudly hung a big plastic sign on which it was written “The target 

– Zero failures” and indeed he went long and wide explaining how important this target is. 

When my turn came I looked again on the big plastic board and the mathematical genes in me 

rebelled. I started with the basic equation of optimization of total cost. Here it is: 

ddmmffT CTCNCNC ++=   

fN  is the number of failures and fC  is the cost (to the company) of repairing a failure . mN   

is the number of maintenance operations and mC is the cost of maintenance and    dT is the 

down time of the system with a cost dC per unit down time. Indeed if there are various types 

of failures and maintenance operations then a summation sign is added and we sum over the 
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various types of operations and failures. This expression can be further elaborated and written 

in the form:  

∫∫ −++ψ=
T

0
dmm

T

0
0fT dt)]t(A1[x)t(CCNdt)t(xCC  

The first term is simply the integral over the event rate going into a failed state providing the 

total number of failures while the last integral is over the unavailability multiplied by the cost 

(that may be dependent on the time when the down time took place). The purpose of the 

organization is to reduce the total cost. In the context of the above equation we can only 

change the number of maintenance operations mN . The point is that such changes will effect 

all three terms. By applying more maintenance the age of our components will be reduced, 

this will result in fewer failures and less down time. Thus increasing the cost of the second 

term will help to decrease the cost of the first and third term. Indeed it is possible, this way, to 

decrease the first term to zero – “Zero failures”. All one needs to do is continuously perform 

maintenance. Imagine your car going into the garage for oil replacement. Once the operation 

is completed the oil is replaced again and again and again in a never-ending cycle. I looked at 

the audiences, at this point, and realized that many had a quart of laughter mixed with a pint 

of anger in the corners of their eyes. This kind of oil replacement is definitely extremely 

stupid. But, an equation is an equation. Increasing  mN  such that it equals 
mtT
T  where mtT is 

the duration of maintenance will most definitely reduce the number of failures in your car to 

zero. Indeed, you will not have a car (and the third term of the equation will be very high). 

Still the target of: 

 “The target – Zero failures”, will be definitely achieved. 

This will cost a lot of money (in maintenance). This will make the customers extremely 

unhappy as they will not have the system but it will most definitely achieve the goal of the 

organization as, so proudly, expressed by the plastic scroll.  No! it is not self evident that the 

system is needed. Not more then the need to reduce the number of failures. The goal of the 

organization must be expressed in coherent correct terms or it may lead to solutions such as 

the above. In fact, I said, one can even devise a way to reduce the cost of maintenance to zero 

without loosing the glorious target of “Zero failures”. Do not manufacture or sell the system! 

This will indeed reduce to zero both the cost of maintenance and the cost of failures. Both 

solutions are points on the space of the above equation.  

At this point the department head rose. I knew it was coming. I knew it. He looked at me with 

a polite chill in his eyes and gently stated “ It is clear to everyone in this meeting that the 
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systems must work! It is not necessary nor useful for you to suggest stupid solutions”. Yes it 

is, I insisted. Yes, it is because the stupid solution is actually written all over the above 

statement. If you write “Zero failures with 98% average availability” then you define a goal 

that may not be achieved but makes both industrial and mathematical sense.  Anything else 

does not belong, not to industry at least. I then continued my talk but the highlight of it was 

over. 

I could never check if what I said made any impact because I was never again “invited” to any 

meeting in that plant. I do not know if they ever achieved zero failures. I do know that they 

achieved “zero aggravation from me”. Zero aggravation seems to be a target of every well 

doing organization. It is a primary target of human beings.  

………………………………………………… 
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